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Abstract
The six-vertex F model on the square lattice constitutes the unique example
of an exactly solved model exhibiting an infinite-order phase transition of
the Kosterlitz–Thouless type. As one of the few non-trivial exactly solved
models, it provides a welcome gauge for new numerical simulation methods
and scaling techniques. In view of the notorious problems of clearly resolving
the Kosterlitz–Thouless scenario in the two-dimensional XY model numerically,
the F model in particular constitutes an instructive reference case for the
simulational description of this type of phase transition. We present a loop-
cluster update Monte Carlo study of the square-lattice F model, with a focus on
the properties not exactly known, such as the polarizability or the scaling
dimension in the critical phase. For the analysis of the simulation data,
finite-size scaling is explicitly derived from the exact solution and plausible
assumptions. Guided by the available exact results, the careful inclusion of
correction terms in the scaling formulae allows for a reliable determination of
the asymptotic behaviour.

PACS numbers: 75.10.Hk, 05.10.Ln, 68.35.Rh

(Some figures in this article are in colour only in the electronic version)

1. Introduction

An ice-type or vertex model was first proposed by Pauling [1] as a model for (type I) water
ice. It was known that ice forms a hydrogen-bonded crystal, i.e., the oxygen atoms are
located on a four-valent lattice and the bonding is mediated by one hydrogen atom per bond.
Pauling proposed that there be some non-periodicity in the arrangement of the hydrogen
bonds in that the hydrogen atoms could be located nearer to one or the other end of the

0305-4470/05/327067+26$30.00 © 2005 IOP Publishing Ltd Printed in the UK 7067

http://dx.doi.org/10.1088/0305-4470/38/32/002
mailto:weigel@boromir.uwaterloo.ca
mailto:janke@itp.uni.leipzig.de
http://stacks.iop.org/ja/38/7067


7068 M Weigel and W Janke
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Figure 1. Allowed arrow configurations for the six-vertex model on the square lattice, restricted
by the ice rule.

bond. This positioning should satisfy the ice rule, stating that always two of the bonds are
in the ‘close’ position and two are in the ‘remote’ position with respect to the considered
oxygen atom. Denoting the position of the hydrogen atom by a decoration of the bond with
an arrow pointing to the closer oxygen, this leads to the arrow configurations depicted in
figure 1 when, for simplicity, placing the oxygen atoms on a square lattice instead of the
physically realized diamond lattice. Generalizing the resulting six-vertex model for square
ice, one assigns energies εi , i = 1, . . . , 6, to the vertex configurations depicted in figure 1,
resulting in Boltzmann factors ωi = exp(−βεi), where β = 1/kBT is the inverse temperature
or coupling. Assuming an overall arrow reversal symmetry (corresponding to the absence of
an external electric field), one abbreviates a = ω1 = ω2, b = ω3 = ω4 and c = ω5 = ω6.
Then, the original ice model corresponds to the choice εi = 0, i = 1, . . . , 6, whereas another
especially symmetric version assumes

εa = εb = 1, εc = 0 resp. a = b = e−β, c = 1, (1)

which is known as the F model of anti-ferroelectrics [2], since due to the choice of weights
the vertex configurations 5 and 6 will dominate for low temperatures, resulting in a ground
state of staggered, anti-ferroelectric order as depicted in figure 2.

The six-vertex model as well as the more general eight-vertex models, obtained by
including sink and source vertices with all four arrows pointing in and out, respectively, have
been exactly solved in zero field using transfer matrix techniques, see [3]. They exhibit
rich phase diagrams featuring first-order and continuous phase transitions as well as multi-
critical points. In particular, the six-vertex F model undergoes an infinite-order transition
of the Berezinskii–Kosterlitz–Thouless (BKT) type to an anti-ferroelectrically ordered phase
and the scaling behaviour of the basic thermodynamic quantities can be extracted from the
closed-form solution. Since there is no solution of the model in a (staggered) field, however,
information about properties related to the polarization is incomplete. The same is true for
the correlation function, which can only be evaluated at the so-called free-fermion point of
the model [3, 4] (the correlation length, however, is exactly known for all temperatures, see
below). Also, since the solution was obtained in the thermodynamic limit, information about
finite-size scaling (FSS) is not exact, but must be deduced from scaling arguments. Apart
from its prominent position as a non-trivial solvable model of statistical mechanics, the F
model has enjoyed sustained interest due to its equivalence to the body-centred solid-on-solid
(BCSOS) surface model [5], and hence several dynamical generalizations of the six-vertex
model have been considered [6]. A six-vertex model with the so-called domain-wall boundary
conditions has recently attracted considerable interest and found numerous applications in
counting problems, the quantum inverse scattering method, etc [7].

The Berezinskii–Kosterlitz–Thouless [8] scenario of an infinite-order phase transition
induced by the unbinding of vortex pairs in the two-dimensional XY model has been found
exceptionally hard to confirm numerically [9–12]. This is partially due to the nature of
the infinite-order phase transition itself, which is not easy to distinguish from a finite-
order transition numerically, and the presence of a critical phase, which renders many of
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Figure 2. Cutout of one of the two anti-ferroelectrically ordered ground states of the square-lattice
F model. The state consists of vertices 5 and 6 in equal proportions. The dashed lines indicate one
of the two tilted sub-lattices of ferroelectrical order.

the standard FSS techniques less useful. The main trouble, however, is caused by the presence
of logarithmic corrections, expected to be present on general grounds for a theory with central
charge c = 1 [13] and explicitly found from the BKT theory of the model [14]. While
a numerical confirmation of the leading scaling behaviour of the BKT transition has been
achieved in the past decade or so, the resolution of the logarithmic scaling corrections is still
at the forefront of problems amenable to numerical investigation today [15–17].

From duality arguments and mapping to Coulomb gas systems, the F model is known
to be asymptotically equivalent to the two-dimensional XY model at criticality. Thus, apart
from being an interesting subject in its own right, a detailed analysis of the thermal and FSS
properties of the six-vertex F model in the critical phase and at its BKT point serves as a
guideline for simulations of the XY model case. Guidance is been given here through the fact
that the exact solution of the F model yields the leading singularities including the correction
terms explicitly and, most notably for numerical purposes, the exact critical coupling of the
model. Uncertainties occurring in analyses of the XY model such as systematic errors in the
determination of the transition point or the effect of neglected higher order correction terms
can be studied rather explicitly for the F model. Finally, when it is found here that one has
to consider large system sizes and proceed carefully when including correction terms into
the fits, this situation should also be put into relation with the case of an F model placed on
an annealed ensemble of random lattices considered recently [18]. Guided by the present
investigation, this case has to be analysed even more carefully due to an additional fractality
of the lattices, which reduces the effective linear extent of the amenable lattice sizes, thus
increasing finite-size effects even further.

The other paradigm example of an exactly solved non-trivial model of statistical
mechanics, the two-dimensional Ising model, has served as a benchmark system and
playground for new ideas in the theory of critical phenomena as well as for new algorithms in
computer simulations in an overwhelming number of studies, and almost all of its aspects have
been investigated (but not necessarily understood). In contrast, for the case of vertex models
only rather recently efficient cluster-update Monte Carlo algorithms have been developed
[19–21], mainly with the mapping of vertex models on quantum chains in mind, and some
simulations of special aspects of the six-vertex model, such as dynamical critical exponents of
the considered algorithms [20, 22], properties of the equivalent surface models [23], matching
of renormalization-group flows with the XY model [24] or the case of domain-wall boundary



7070 M Weigel and W Janke

1
a/c

1

0

b/
c

I

II

III

IV

F

Figure 3. The phase diagram of the square-lattice, zero-field six-vertex model in terms of the
re-scaled weights a/c and b/c. Phase boundaries are indicated by solid lines. The dashed line
denotes the parameter range of the F model. The dotted line corresponds to the free-fermion line
� = 0.

conditions [21] have been analysed. A systematic thermal and FSS study of the F model in the
critical high-temperature phase, at the critical point and its low-temperature vicinity including
the analysis of the logarithmic correction terms, however, is to our best knowledge lacking so
far.

The rest of the paper is organized as follows. In section 2 we outline the extent of exact
knowledge about the phase diagram and the occurring transitions of the six-vertex model and
the F model in particular and give an overview over scaling at a BKT point in general. After a
short description of the simulational setup used, section 3 contains a report of the analysis of the
simulation data, comprising the FSS analyses of the critical-point thermodynamic properties
(where the corresponding FSS relations are explicitly derived from the closed-form solution),
an investigation of the behaviour in the critical phase as well as a thermal scaling analysis in
the low-temperature phase of the model. Finally, section 4 contains our conclusions.

2. Analytical results

2.1. Exact solution and phase diagram

The square-lattice, zero-field six-vertex model has been solved exactly in the thermodynamic
limit by means of the Bethe ansatz by Lieb [25] and Sutherland [26]. The analytic structure
of the free energy is most conveniently parametrized in terms of the reduced coupling

� = a2 + b2 − c2

2ab
, (2)

such that the free energy takes a different analytic form depending on whether � < −1,−1 <

� < 1 or � > 1. This leads to a phase diagram of the model consisting of four distinct phases
as shown in figure 3. The phases I and II are both characterized by � > 1, thus corresponding
to the same analytic form of the free energy; they represent ferroelectrically ordered phases,
the ground states being related to each other through a global rotation by π/2. In these
phases, the system exhibits the peculiarity of sticking to the respective ground states also for
non-zero temperatures. The intermediate case −1 < � < 1, corresponding to phase III,
includes the infinite temperature point a = b = c = 1 and thus belongs to a disordered phase,
which turns out to be massless, i.e., it exhibits algebraic correlations throughout. This latter
effect can be traced back to the fact that the six-vertex model corresponds to a critical surface in
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the phase diagram of the eight-vertex model. Finally, for � < −1, one has c > a +b, resulting
in the anti-ferroelectric order of phase IV described above for the F model. The parameter
space of the F model is restricted to the dashed line connecting phases III and IV indicated in
figure 3. The dotted line of figure 3 indicates the curve � = 0, where the six-vertex model is
equivalent to a system of free fermions and an exact solution is even possible in the presence of
a staggered field [3, 4]. The nature of the transitions between the phases I–IV can be extracted
from the exact solution [3, 25, 26]. Crossing the phase boundaries I → III and II → III, one
finds discontinuities corresponding to the first-order transitions. The transition III → IV, on
the other hand, is peculiar in that all the temperature derivatives of the free energy exist and
vanish exponentially as the transition is approached. These are the properties of a BKT phase
transition to be detailed below in section 2.2.

While the ferroelectrically ordered phases I and II exhibit a plain polarization, which
can be used as an order parameter for the corresponding transition, the anti-ferroelectric
order of phase IV is accompanied by a staggered polarization with respect to a sub-lattice
decomposition of the square lattice. This is equivalent to a mutually inverse plain polarization
on two tilted, square sub-lattices as indicated in figure 2. An order parameter for the
corresponding transition can be defined by introducing overlap variables σi for each vertex i
such that [3]

σi = vi ∗ v0
i , (3)

where v0
i denotes the anti-ferroelectric ground-state configuration depicted in figure 2 and the

product ‘∗’ denotes the overlap given by

v ∗ v′ ≡
4∑

k=1

Ak(v)Ak(v
′), (4)

where k numbers the four edges around each vertex and Ak(v) should be +1 or −1 depending
on whether the corresponding arrow of v points out of the vertex or into it. The thus defined
spontaneous staggered polarization P0 ≡ 〈σi〉/2 = 〈σ 〉/2 constitutes an order parameter for
the anti-ferroelectric transition III → IV.

As indicated above, the F model orders anti-ferroelectrically at � = −1, corresponding
to a critical coupling βc = ln 2. From the exact solution [3, 25, 26], the model’s asymptotic
free energy per site in the low-temperature phase β > βc can be written as

f low(λ) = β − λ

2
−

∞∑
m=1

exp(−mλ) sinh(mλ)

m cosh(mλ)
, (5)

where λ = acosh
[

1
2 exp(2β) − 1

]
. On the high-temperature side β < βc, it takes a different

analytic form and has the following integral representation:

f high(µ) = β − 1

4µ

∫ ∞

0

dt

cosh(πt/2µ)
ln

(
cosh t − cos 2µ

cosh t − 1

)
, (6)

where µ = arccos
[

1
2 exp(2β) − 1

]
. The correlation length is given by the two equivalent

expressions

exp[−1/ξ(λ)] = 2x1/4
∞∏

m=1

(
1 + x2m

1 + x2m−1

)2

=
∞∏

m=1

(
1 − y2m−1

1 + y2m−1

)2

, (7)

where x = exp(−2λ) and y = exp(−π2/2λ) are ‘dual’, conjugate nomes of an elliptic
function, yielding two different representations being rapidly convergent for large λ (first
form) and small λ (second form), respectively. Although the general F model has not been
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solved in a staggered electric field, as a single result the spontaneous staggered polarization is
known exactly for all inverse temperatures β > βc [27],

P0(λ)1/2 =
∞∏

n=1

tanh(nλ) = 1 + 2
∞∑

n=1

(−1)nxn2 =
(

2π

λ

)1/2 ∞∑
n=1

y(n− 1
2 )2

, (8)

where, again, the first two forms are rapidly convergent for large λ, away from criticality,
and the third form converges fast close to the critical point λ = 0. As a proper order
parameter, the spontaneous polarization P0 vanishes identically in the critical high-temperature
phase β < βc.

2.2. The Berezinskii–Kosterlitz–Thouless phase transition

As stated the F model undergoes a finite-order phase transition of the BKT type at βc = ln 2.
For later reference, let us shortly bring to mind the basic features of the BKT scenario for the
two-dimensional XY model [8], which forms the paradigmatic case of an infinite-order phase
transition, albeit the exact solution of the F model was published a couple of years earlier.
As a consequence of the Mermin–Wagner–Hohenberg theorem [28], the two-dimensional
XY model cannot develop an ordered phase with a non-vanishing value of a locally defined
order parameter for non-zero temperatures3. Nevertheless, it undergoes a finite-temperature
phase transition resulting from the unbinding of vortex pairs superimposed on an effective
spin-wave behaviour of the low-temperature phase. Above the critical temperature, spin–spin
correlations decay exponentially,

G(r) ∼ e−r/ξ(T ), T ↓ Tc, (9)

while below Tc long-range correlations are encountered,

G(r) ∼ r−η(T ), T � Tc, (10)

such that the correlation length ξ(T ) = ∞ for all T � Tc and the massless low-temperature
phase corresponds to a critical line terminating at the critical point Tc [8]. The critical exponent
η = η(T ) varies continuously along this critical line, with ηc = η(Tc) = 1/4. Approaching
the critical point Tc from above, the correlation length diverges exponentially instead of
algebraically as for a usual continuous phase transition,

ξ(T ) ∼ exp(a/tρ), t > 0, (11)

where t = (T − Tc)/Tc and ρ = 1/2. The behaviour of further observables at the transition
point can be conveniently expressed in terms of this singularity of the correlation length. In
particular, the magnetic susceptibility diverges as

χ(T ) ∼ ξγ/ν = ξ 2−ηc , T ↓ Tc. (12)

The specific heat, on the other hand, is only very weakly singular, behaving as (omitting a
regular background contribution)

Cv ∼ ξ−2. (13)

Finite-size scaling analyses of the BKT transition are hampered by the occurring essential
singularities and the presence of a critical phase. As a consequence of the latter, magnetic
observables such as the susceptibility do not exhibit maxima in the vicinity of the critical
point, which otherwise could be used for an estimation of the transition temperature from finite
systems. For the same reason, also the Binder parameter requires a more careful treatment

3 Note, however, that on a finite lattice, the magnetization attains a non-zero value in the low-temperature phase,
cf [29].
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than at a standard second-order phase transition [29, 30]. Nevertheless, the general arguments
for finite-size shifting and rounding remain valid, such that suitably defined pseudo-critical
points T ∗(L) for systems with linear extent L scale to the critical point Tc as [31]

[T ∗(L) − Tc]/Tc ∼ (ln L)−1/ρ, (14)

cf equation (11), since sufficiently close to the critical point, the growth of the correlation
length becomes limited by the linear extent L of the system. Correspondingly, ξ can be
replaced by L (neglecting corrections to scaling for the time being) to yield the FSS law

χ(Tc, L) ∼ Lγ/ν = L2−ηc , (15)

which for ηc = 1/4 predicts a rather strong divergence. On finite lattices, the specific heat is
found to exhibit a smooth peak, which is however considerably shifted away from the critical
point into the high-temperature phase and does not scale as the lattice size is increased [31].
Thus, with the main strengths of FSS being not exploitable for the BKT phase transition, the
focus of numerical analyses of the XY and related models has been on thermal scaling, see
e.g. [9, 10]. In addition, renormalization-group analyses predict logarithmic corrections to
the leading scaling behaviour [14], as expected for a theory of central charge c = 1, which
have been found exceptionally hard to reproduce numerically due to the presence of higher
order corrections of comparable magnitude (for the accessible lattice sizes) [11, 12, 17].

From the exact solution of the square-lattice F model, equations (5)–(8), one extracts the
asymptotic behaviour in the vicinity of the critical point βc = ln 2. Approaching the critical
point from the low-temperature side, λ ↓ 0, the singular part of the free energy density (5) and
the correlation length (7) behave as

fsing(λ) ∼ 4kBTc exp(−π2/λ), ξ−1(λ) ∼ 4 exp(−π2/2λ). (16)

Since λ goes as λ ∼ (−t)1/2 for t ↑ 0, this exactly corresponds to the essential singularity
described above for the BKT transition of the two-dimensional XY model with ρ = 1/2.
The specific heat has the weakly singular contribution Cv ∼ ξ−2 as expected. Concerning
properties related to the order parameter, the situation for the F model is somewhat different
from that of the XY model. The order parameter (8) is non-vanishing for finite temperatures
in the ordered phase4. Thus, the corresponding staggered anti-ferroelectric polarizability χ

shows a clear peak in the vicinity of the critical point for finite lattices. However, in the
limit L → ∞, the polarizability diverges throughout the whole critical high-temperature
phase. Note that compared to the XY model, the roles of high- and low-temperature phases
are exchanged in this respect, as expected from duality [32]. The spontaneous polarization (8)
scales as

P0(λ) ∼ λ−1 exp(−π2/4λ) ∼ ξ−1/2 ln ξ, (17)

as λ ↓ 0, implying β/ν = 1/2. Assuming the Widom–Fisher scaling relation α + 2β + γ = 2
to be valid5, from equations (16) and (17) Baxter conjectured the following scaling of the
zero-field staggered polarizability [27]:

χ(λ) ∼ λ−2 exp(π2/2λ) ∼ ξ(ln ξ)2, (18)

which implies γ /ν = 2 − ηc = 1, obviously different from the XY model result ηc = 1/4.
Since the whole high-temperature phase is critical, scaling of the polarizability is expected

4 Note that the Mermin–Wagner–Hohenberg theorem [28] does not apply to the F model with its discrete symmetry.
5 Although the BKT transition is characterized by essential singularities and thus the conventional critical exponents
are meaningless, one can re-define them by considering scaling as a function of the correlation length ξ instead of the
reduced temperature t [33]. The exponents α, β and γ used here and in the following should be understood in this
sense. The exponent ρ, however, has its special meaning defined by (11).
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throughout this phase. In fact, for the free-fermion case � = 0 or β = βf ≡ (ln 2)/2, which
is exactly solvable in a staggered field [4], a logarithmic divergence of the polarizability is
found, implying 2 − ηf = 0. More recently, the behaviour of η in the critical phase of the F
model has been conjectured from scattering methods to follow the form [23, 34, 35]

η(�) = π/arccos �. (19)

This is in agreement with the exact results for the critical F model at � = −1 and the free-
fermion case at � = 0. Additionally, the pure ice model at � = 1/2 is known to have a
‘dipolar’ correlation function with η = 3 as predicted by (19) [34, 36]. Note that, since the
dual relation to the XY model is only valid at criticality and the XY model magnetization is not
equivalent to the polarizability of the F model, this result is not simply related to the exponent
η of the XY model in its critical low-temperature phase, which actually decreases as one moves
into the critical phase, see e.g. [14, 37].

The common occurrence of a BKT-type phase transition for the XY and F models is no
coincidence. In fact, it can be shown that the critical points of both models are asymptotically
dual to each other [32]. This can be seen by noting that the Villain representation of the
XY model [38] is dually equivalent to a model of the solid-on-solid (SOS) type known
as the discrete Gaussian model [39], which in turn, as typical for SOS models, can be
mapped onto the Coulomb gas [40]. The F model, on the other hand, also has a height-
model representation known as the BCSOS (body-centred SOS) model [5], which is itself
asymptotically equivalent to the Coulomb gas. Alternatively, the stated equivalence can
be seen from the loop representation of the O(n) vector model [41], which for the critical
O(2) model yields a close-packed loop ensemble equivalent to that of the loop representation
of the critical F model [42]. The apparent discrepancy regarding the magnetic exponents
β/ν and γ /ν between the XY and F models, on the other hand, is not an indicator of different
universality classes of the models, but reflects the fact that the F model staggered polarizability
is not equivalent to the magnetic susceptibility of the XY model.

3. A loop-cluster update scaling study

3.1. Simulation setup

For an analysis of the six-vertex F model via Monte Carlo simulations, a suitable simulation
update scheme has to be devised. Since the focus here lies on the investigation of the vicinity
of the BKT transition and the critical phase of the model, all local updates will suffer from the
severe critical slowing down with dynamical critical exponent z ≈ 2 expected at or close to
criticality. Fortunately, a fully fledged framework of cluster algorithms has been constructed
for the simulation of the six- and eight-vertex models, mainly motivated by their equivalence
with the Trotter–Suzuki decomposition of quantum spin chains. Here, we apply the so-
called loop-cluster algorithm [43], which operates on a representation of the vertex model
by polygons consisting of the lattice edges and induced by a stochastic breakup of the lattice
vertices, for details see [43]. For the case of the F model at criticality, a reduction of critical
slowing down to z = 0.71(5) has been reported [44].

Simulations were performed for square lattices with periodic boundary conditions,
measurements were taken after each multi-cluster loop-update step due to the small
autocorrelation times observed. To enable a proper FSS analysis, for the investigation of
the BKT point two main series of simulations were performed; one around the peak locations
of the staggered anti-ferroelectric polarizability for sizes L = 16, 24, 32, 46, 64, 92, 128, 182
and 256, and another at the asymptotic critical coupling βc = ln 2 = 0.6931 . . . with additional
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Figure 4. Non-scaling of the specific heat Cv of the square-lattice F model. For clarity, simulation
results from only three lattice sizes are shown. The solid line denotes the exact asymptotic result
found from the free energy density of equations (5) and (6). The dashed vertical line marks the
infinite-volume critical point βc = ln 2 = 0.6931 . . . .

lattice sizes of L = 364, 512, 726 and 1024. To examine the behaviour in the critical phase,
additional series of simulations have been performed at fixed temperatures β < βc with lattice
sizes identical to those at βc. Per simulation, after equilibration a total of between 1 × 105 and
2 × 105 measurements was taken.

3.2. Results of the finite-size scaling analysis

3.2.1. Non-scaling of the specific heat. The specific heat is defined by

Cv = β2[〈E2〉 − 〈E〉2]/L2, (20)

with the internal energy E of a vertex configuration

E =
∑

i

E(vi), E(vi) ∈ {ε1, . . . , ε6}, (21)

where vi denotes the configuration of vertex i of the lattice. It exhibits a broad peak shifted
away from the critical point into the low-temperature phase [45]6. The essential singularity
predicted by equation (13) cannot in general be resolved, since it is covered by the presence of
non-singular background terms. Thus, the non-scaling of a broad specific-heat peak (together
with a scaling of the susceptibility or polarizability to be considered below) is commonly taken
as a first good indicator for a phase transition to be of the BKT type [31]. Indeed, this is what
is found from the simulation data as is shown in figure 4. No scaling is visible, apart from very
minor deviations for the smallest lattice sizes and close to criticality. All data points collapse
onto a single curve, which is identical to the exact asymptotic behaviour of Cv extracted from
the free energy density of equations (5) and (6) as displayed in figure 4 for comparison. In
particular, at the critical point βc = ln 2, we find for the internal energy U = 〈E〉 and the
specific heat Cv for the 10242 lattice,

U(βc) = 0.333 335(4), Cv(βc) = 0.3005(15), (22)

6 Recall that the specific heat of the 2D XY model exhibits a peak in the high-temperature phase [10], as expected
from duality.
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in perfect agreement with the exact results U(βc) = 1/3 and Cv(βc) = 28(ln 2)2/45 ≈ 0.2989
[45].

3.2.2. The critical coupling. For an independent determination of the critical coupling βc

from the simulation data, we exploit the fact that the maxima of the staggered polarizability
for finite lattices should be shifted away from the critical point according to the scaling
relation (14). From finite-lattice simulations the polarization is determined by breaking the
symmetry explicitly, i.e., if one defines � = ∑

i σi , the spontaneous polarization is measured
as P0 = 〈|�|〉 and the polarizability is estimated by

χ = [〈�2〉 − 〈|�|〉2]/L2. (23)

The peak locations of χ(β) were determined from simulations at nearby couplings β by means
of the reweighting technique [46]. The phenomenological theory of FSS [31] implies that the
polarizability χ for a finite lattice can be expressed as

χ(β,L) = Lγ/νX[L/ξ(β,∞)], (24)

where ξ(β,∞) = ξ(β, L = ∞) denotes the correlation length of the infinite system and X
is an analytic scaling function (here, we omit additional irrelevant scaling fields representing
corrections to scaling). Now, the maxima of χ(β,L) correspond to the maximum of X and
thus all must occur at the same value of the argument L/ξ(β,∞) (provided X only has one
maximum),

L

ξ [β∗(L),∞]
≡ κ−1 = const, (25)

thus defining a series of pseudo-critical temperatures β∗(L) = βχ(L). To find the general
form of β∗(L) in the scaling region, we need to solve the expression (7) for β. Inversion of
the Taylor series of ξ of equation (7) in powers of y = exp(−π2/2λ) yields

λ = −π2

2

(
ln

[
1

4
ξ−1 − 1

48
ξ−3 + O(ξ−5)

])−1

, (26)

and β(λ) expands around the critical point λ = 0 as

β = ln 2 +
1

8
λ2 − 1

192
λ4 + O(λ6). (27)

To leading order in both expansions, one thus has via equation (25)

β∗(L) = βc + Aβ(ln 4ξ)−2 = βc + Aβ(ln 4κL)−2, (28)

where Aβ = (π2/4
√

2)2. Since in the FSS region ξ ≈ L and the magnitude of the correction
term ξ−3 in equation (26) is relatively suppressed by a factor of 10−4 already for the smallest
lattice size L = 16 considered here, we conclude that this type of correction is not important
at the available level of statistical accuracy. Taking higher order terms of (27) into account,
on the other hand, leads to the corrected scaling form

β∗(L) = βc + Aβ(ln 4κL)−2 + Cβ(ln 4κL)−4 + O[(ln 4κL)−6], (29)

with Cβ = (π2/8
√

3)2. We tested fits of this expected asymptotic form to the simulation
data for the toy model of an analytically generated series of pseudo-critical points β∗(L)

defined by equation (25) and the exact form of the correlation length (7) with κ = 1 and
L = 16, 24, . . . , 256 as in the simulations, while taking βc, κ and the amplitudes Aβ and Cβ

as fit parameters. Already without the correction, i.e., enforcing Cβ = 0, the critical coupling
is reasonably reproduced as βc = 0.692; the presence of neglected corrections shows up,
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however, in a fit result κ ≈ 1.3. Lifting the constraint on the amplitude Cβ , one arrives at
βc = 0.6931 and κ = 1.05, indicating perfect agreement with the input data on the level of
accuracy to be expected from the simulations.

Considering real simulation data, one might actually want to replace ξ(β,∞) in (25) by
the finite-size expression ξ(β, L) (or, equivalently, allow the constant κ to depend on system
size), introducing additional corrections not explicitly included in the scaling form (24)7.
Exact expressions for the finite-size behaviour of ξ are not available8, however, in view of the
scaling forms (17) and (18) and the experience with various models with logarithmic scaling
corrections, it seems reasonable to make the following general ansatz:

ξ [β∗(L), L] = κL[1 + Aξ(ln 4κL)ωξ ], (30)

with some a priori unknown exponent ωξ . Depending on the sign of ωξ , this includes
two basic inequivalent cases, namely a leading multiplicative logarithmic correction for
ωξ > 0 or an additive logarithmic correction for ωξ < 0. For the Ising and generalized
φ4 models at their upper critical dimension, for instance, one has multiplicative logarithmic
corrections, corresponding to ωξ > 0, see e.g. [47, 49, 50]. On the other hand, for the two-
dimensional q = 4 Potts model [51] as well as the two-dimensional XY model [17], both of
which are asymptotically related to six-vertex models, only additive logarithmic corrections
to the finite-size correlation length occur at criticality. For positive ωξ , the replacement
ξ(β,∞) → ξ(β, L) in the derivation of the scaling of the pseudo-critical temperatures β∗(L)

from (25)–(27) produces a correction of the form ln(ln 4κL)/(ln 4κL)3, whereas for integer
ωξ < 0 the corrections can be expanded in a power series in 1/ ln 4κL. To enable linear fits,
we finally express the scaling forms in terms of L instead of 4κL, leading to the following
scaling descriptions:

β∗(L) = βc + Aβ(ln L)−2 + Bβ(ln L)−3 + Cβ(ln L)−4, ωξ < 0, (31)

resp.

β∗(L) = βc + Aβ(ln L)−2

[
1 + Bβ

ln ln L

ln L

]
, ωξ > 0. (32)

An indirect determination of the finite-size correlation length to be discussed below in
section 3.2.3 strongly hints at the presence of only additive logarithmic corrections in (30),
implying ωξ < 0, but in some cases both possibilities will be considered here to illustrate the
fact that a numerical discrimination between similar forms of the corrections is not at all easily
possible (note that due to the extremely slow variation of the log–log term, it might effectively
be considered constant for the range of lattice sizes considered, which would render the form
(32) equivalent to the ansatz (31)).

The determined peak locations of the polarizability together with an example fit of the
functional form (31) with omitted corrections, i.e., for Bβ = Cβ = 0, to the data in the
range L = Lmin = 92 up to L = 256, are shown in figure 5. The fit parameters of such
fits, successively omitting points from the low-L side, are compiled in table 1. The strong
deviations of the data from the form with Bβ = Cβ = 0 corresponding to a straight line in the
chosen scaling of the axes are apparent from figure 5. Compared to the exact transition point
βc = ln 2, the estimates of βc from these fits are clearly too large, dropping only very slowly
as points from the small-L side of the list are successively omitted, cf table 1. One might
attempt to extrapolate these results towards Lmin → ∞ using the scaling form (31); since the

7 Note that for the case of models with multiplicative logarithmic corrections, the replacement ξ(β, ∞) → ξ(β, L)

on the rhs of (24) has been suggested as the proper way of describing FSS in the first place [47].
8 Note, however, that exact expression are available for the finite-size correlation length of the XY model on the strip
geometry, cf [48].
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Figure 5. Peak positions of the staggered anti-ferroelectric polarizability of the F model from
simulations as a function of lattice size. The lines show fits of the form (31) to the data. The
dashed line corresponds to an uncorrected fit with Bβ = Cβ = 0, starting from Lmin = 92. The
solid curve corresponds to a fit with corrections and Lmin = 32.

Table 1. Parameters of least-squares fits of the functional form (31) to the simulation estimates
for the peak locations of the staggered polarizability. No correction terms were taken into account,
i.e., Bβ = Cβ = 0 were held fixed throughout. Q denotes the quality-of-fit parameter.

Lmin βc Aβ Q

16 0.738 22(48) 0.3547(62) 0.00
24 0.732 70(59) 0.4533(87) 0.00
32 0.730 33(74) 0.5018(126) 0.00
46 0.726 35(110) 0.5912(223) 0.46
64 0.724 09(172) 0.6453(385) 0.88
92 0.723 22(261) 0.6668(624) 0.78

128 0.720 77(463) 0.7307(1173) 0.79

individual data are highly correlated, however, this would introduce a strong bias. Instead,
we directly use the higher order logarithmic corrections in the fitting procedure. Note that
this effect of strong scaling corrections here occurs for rather large lattices, where for a usual
continuous phase transition without logarithmic corrections the presence of scaling corrections
usually would not be much of an issue for the determination of the leading scaling behaviour.
Relaxing the constraints on Bβ only or on both parameters, Bβ and Cβ , we arrive at the fit
results compiled in table 2. It is apparent that the complexity of the completely unconstrained
fit type is at the verge of exceeding the available statistical accuracy of the data, such that
competing local minima of the χ2 distribution exist, which result in a rather discontinuous
evolution of the amplitudes Aβ,Bβ and Cβ as the lower-end cut-off Lmin is increased. This
functional form fits the data very well, however, and the estimates for βc are all in agreement
with the asymptotic value βc = 0.6931 . . . in terms of the statistical errors. It seems clear
that the remaining vague tendency of the fits to yield βc slightly above its asymptotic value
could, in principle, be removed by including further correction terms for the case of extremely
accurate data. Adding a (ln L)−5 term in (31), for instance, yields βc = 0.674(45),Q = 0.72
when including all data points.
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Table 2. Parameters of fits of the form (31) to the peak locations of the polarizability. As indicated,
Cβ = 0 was held fixed for the fits shown in the upper part of the table, while both parameters, Bβ

and Cβ , were allowed to vary in the fits presented in the lower part.

Lmin βc Aβ Bβ Cβ Q

16 0.7103(17) 1.58(7) −2.91(17) [0.0] 0.83
24 0.7118(29) 1.50(14) −2.79(37) [0.0] 0.78
32 0.7069(46) 1.78(25) −3.47(67) [0.0] 0.97
46 0.7108(85) 1.53(51) −2.74(149) [0.0] 0.97
64 0.714(16) 1.34(103) −2.16(320) [0.0] 0.89

16 0.7119(84) 1.44(71) −2.2(34) −0.9(46) 0.73
24 0.695(16) 3.2(16) −11.4(848) 12(124) 0.84
32 0.723(32) −0.04(343) 6.7(191) −15.8(297) 0.96
46 0.713(76) 1.3(93) −1.1(553) −2.7(920) 0.88

Using the alternative fit form (32) valid for ωξ > 0, on the other hand, results in fits quite
similar to those obtained from the ansatz (31) with both correction terms present. This relates
back to the remark concerning the extremely slow variation of the log–log term, which makes
it plausible that the considered correction terms can be effectively interchanged. No specific
drift is observed on increasing the cut-off Lmin. For Lmin = 64, we arrive at βc = 0.695(40),
Q = 0.92. Hence, from the scaling of the pseudo-critical (inverse) temperatures β∗(L), a
conclusion about the sign of ωξ can hardly be drawn.

3.2.3. The correlation length. Owing to the original relation of the present work to an
investigation of the F model on dynamical random graphs where the definition of connected
correlation functions is found to be highly non-trivial [18], we have not measured the
correlation length directly. It turns out, however, that an indirect determination is possible.
Due to the scaling forms (17) and (18) of the polarization P0 and the polarizability χ , for the
combination χ

/
P 2

0 the multiplicative logarithmic corrections cancel such that to leading order

χ(β,L)
/
P 2

0 (β, L) = Aχ/P 2
0
ξ(β, L)2 (33)

in the scaling region, i.e., for β = β∗(L). This relation allows for an indirect determination
of the exponent ωξ of the logarithmic correction of the scaling form (30)

χ(β∗, L)
/
P 2

0 (β∗, L) = Aχ/P 2
0
L2[1 + Aξ(ln L)ωξ ]2, (34)

where, again, the dependence on κ has been dropped since its inclusion leads to very badly
converging, unstable fits. This corresponds to the omission (for the time being) of higher
order corrections to scaling. From the simulation data, we find the combination (34) at the
critical point βc to be very well described by a quadratic behaviour in L, the correction in
square brackets being quite small in absolute terms, cf figure 6. Fitting the form (34) to
the data, we find clearly negative correction exponents ωξ which, however, strongly depend
on the cut-off Lmin, systematically dropping from ωξ = −0.77(96) for Lmin = 16 to, e.g.,
ωξ = −4.1(74) for Lmin = 64 with qualities Q > 0.8. The large statistical errors on the
estimate ωξ support the visual impression from figure 6 that the correction is actually too small
to be reliably resolved at the present level of accuracy, whereas the systematic drift results
from the omission of higher order corrections. In fact, if we assume the familiar power-law
form with negative exponents only,

χ(β∗, L)
/
P 2

0 (β∗, L) = Aχ/P 2
0
L2[1 + Aξ(ln L)−1 + Bξ(ln L)−2]2, (35)
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Figure 6. FSS of the combination χ(β, L)/P 2
0 (β, L) at the asymptotic critical point βc =

0.6931 . . . scaled by the leading L2 behaviour to exhibit the corrections to scaling. The solid line
shows a fit of the form (35) to the data.

we find stable and high-quality (linear) fits for the amplitudes as Lmin is varied, cf the fit
with Lmin = 16 and Q = 0.90 displayed in figure 6. Thus, in analogy to the cases of the
two-dimensional XY [17] and q = 4 Potts [51] models, the F model finite-size correlation
length appears to exhibit only additive logarithmic corrections corresponding to ωξ < 0 in
(30).

3.2.4. FSS of the spontaneous polarization. To derive FSS for the spontaneous polarization,
consider the second form given in equation (8), P

1/2
0 = (2π/λ)1/2[y1/4 + y9/4 + · · ·], which is

rapidly convergent in the scaling window. The sub-leading terms in y are strongly suppressed
in the scaling regime and can be neglected compared to correction terms to follow. Using
again the expansion of y in terms of ξ = ξ(β,∞) and equation (26) for λ(ξ), one arrives at

P0(β,∞) = AP0(4ξ)−β/ν(ln 4ξ)ωP0

[
1 − 2

3
(4ξ)−2 +

4

3

(4ξ)−2

ln 4ξ
+ · · ·

]
, (36)

with AP0 = 4/π, β/ν = 1/2 and ωP0 = 1. Note that this (exact) form does not contain
any corrections of the log–log type present in the XY model correlation function [14]. To
test the sufficiency of this approximation, we again use an analytically generated, ‘artificial’
series of scaling data, evaluating P0(β,∞) exactly from (8) for the series of pseudo-critical
temperatures defined by (25) for κ = 1 and the exact expression (7) for ξ = ξ(β,∞). Fitting
the form (36) without the corrections in square brackets to these data, taking AP0 and β/ν as fit
parameters (holding ωP0 = 1 fixed), we arrive at β/ν = 0.5001, which is clearly sufficiently
close to the exact result in terms of the statistical accuracy to be expected from the simulation
data. We thus conclude that the scaling corrections in square brackets of (36) can be neglected
for our purposes.

Further FSS corrections arise from the behaviour (30) of the finite-size correlation length.
For integer ωξ < 0 as indicated by the investigation of χ

/
P 2

0 above, these corrections can be
expanded in a power series,

P0(β
∗, L) = AP0L

−β/ν(ln L)ωP0

[
1 +

BP0

ln L
+

CP0

(ln L)2
+

DP0

(ln L)3

]
, ωξ < 0, (37)
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where, again, the effect of the multiplier κ is being incorporated in the correction amplitudes.
For the case of a positive ωξ , on the other hand, one would find a log–log correction to occur,
i.e., one arrives at

P0(β
∗, L) = AP0L

−β/ν(ln L)ωP0 −ωξ /2

[
1 + BP0

ln ln L

ln L

]
, ωξ > 0, (38)

where, additionally, the exponent of the multiplicative logarithmic correction is ‘dressed’ as
ωP0 − ωξ/2.

As for the route in the (β∗(L), L) plane taken towards criticality, the two principal choices
are given by the determination of P0(β

∗ = βc, L) at the fixed asymptotic critical coupling
βc = ln 2 or by considering P0[β∗ = βχ(L), L] at the polarizability peak locations βχ(L).9

Asymptotically, both approaches should give compatible results; the strength and composition
of scaling corrections, however, might be noticeably different. Following the first approach,
we analyse the data from lattices of sizes L = 16, . . . , 1024. Uncorrected fits of (37) with
BP0 = CP0 = DP0 = 0 and omitted multiplicative correction term, i.e., ωP0 = 0, yield
exponents β/ν approaching the expected value logarithmically slow on successively omitting
data points from the small-L side of the list. For L = 92, . . . , 1024, for instance, we find
β/ν = 0.4658(20), statistically incompatible with β/ν = 1/2. With variable ωP0 , on the
other hand, the leading scaling exponent can be reasonably reproduced (Lmin = 24),

AP0 = 2.159(35), β/ν = 0.4872(76),

ωP0 = 0.109(33), Q = 0.14,
(39)

but the resulting exponent of the logarithmic correction is estimated in strong deviation
from ωP0 = 1. This shortcoming can only be remedied by including the power-series type
corrections in (37). Letting only BP0 vary, we arrive at estimates β/ν = 0.50(60), ωP0 =
1.12(14),Q = 0.13, which fit the expectations very well. In view of the large error estimates,
however, one should not be deceived by the very small deviation from the exact result.
In fact, even with CP0 = DP0 = 0 still fixed, the χ2 distribution exhibits multiple local
minima and the fit results heavily depend on the initial parameter values. Additionally,
letting CP0 and/or DP0 vary, the fits get very unstable and meaningful results can no
longer be found. Using constraint fits, however, it can be clearly seen that the small value
ωP0 = 0.109(33) above is indeed an effect of neglected higher order scaling corrections: fixing
β/ν = 1/2 as well as ωP0 = 1, we determine the amplitudes AP0 , BP0 , CP0 and DP0 with
Q = 0.26. Now, fitting the form E(ln L)−α to the values of the thus determined polynomial
1 + BP0(ln L)−1 + CP0(ln L)−2 + DP0(ln L)−3, we find α ≈ 0.83. Thus, neglecting the scaling
corrections in square brackets of (37) clearly leads to an effective reduction of the exponent
estimate ωP0 from its asymptotic value ωP0 = 1 by about α ≈ 0.8–0.9.

Considering the spontaneous polarization at the peak positions of the polarizability for
lattice sizes up to L = 256, the uncorrected form with ωP0 = BP0 = CP0 = DP0 = 0
yields very small estimates for β/ν around β/ν ≈ 0.25 slowly increasing with the cut-off
Lmin. Including the multiplicative logarithmic correction of equation (37), i.e., relaxing the
constraint ωP0 = 0, these results can be improved, and, e.g., for Lmin = 92, we find the
following fit parameters:

AP0 = 1.49(50), β/ν = 0.44(11),

ωP0 = 0.71(55), Q = 0.57,
(40)

with an exponent estimate for β/ν well compatible with the exact result β/ν = 1/2, although
endowed with an unpleasantly large statistical error. The inclusion of the power-series type

9 Obviously, the first approach is only amenable in cases where βc is known a priori.
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scaling corrections of (37) necessary for a full resolution of the corrections is not possible
with the present data. Fixing β/ν = 1/2, ωP0 = 1, however, these terms provide an excellent
description for the present scaling corrections and a quality-of-fit Q = 0.72 is already attained
for Lmin = 16 (including all three terms BP0 , CP0 and DP0 ). In general, fits to the data at
the maxima of the polarizability are found to be somewhat less stable and precise than those
to the data at βc, which we attribute to the smaller available system sizes here as well as an
additional scatter of the data due to the necessary reweighting.

In addition to the self-contained scaling routes in the (β∗(L), L) plane described, for the
exactly solved case considered here it is also possible to perform simulations for the analytical
series β∗(L) of inverse temperatures defined by relation (25) with the exact expression (7) for
ξ , which yields a scenario somewhat in between the β∗(L) = βc and β∗(L) = βχ(L) cases.
This artificial series of simulation data is indeed found to result in quite stable fits, such that
at least the amplitude BP0 of (37) can be left variable to yield β/ν = 0.51(47), ωP0 = 1.1(69)

with Q = 0.66 and Lmin = 16. It should be noted that also fits of the form (38) with a log–log
correction are possible with good quality for the scaling of the polarization, which only very
slightly change the estimates for β/ν, but do not lift the estimate for ωP0 to the expected value
ωP0 = 1. Thus, it would be hard to distinguish the forms (37) and (38) solely on the basis of
the numerical polarization data.

3.2.5. FSS of the polarizability. Since the staggered polarizability χ is not known exactly, a
systematic discussion of χ as a function of the asymptotic correlation length ξ is not possible.
However, from Baxter’s conjecture (18), the leading behaviour is expected to be

χ(β,∞) = Aχξγ/ν(ln ξ)ωχ , (41)

with γ /ν = 1 and ωχ = 2. Repeating the arguments presented above for the polarization,
again assuming an integer ωξ < 0 in equation (30), one deduces the following FSS ansatz:

χ(β∗, L) = AχLγ/ν(ln L)ωχ

[
1 +

Bχ

ln L
+

Cχ

(ln L)2
+

Dχ

(ln L)3

]
, ωξ < 0, (42)

whereas ωξ > 0 would result in a form including a log–log correction as in (38). We first
investigate the simulation results at criticality, using data from lattices of sizes L =
16, . . . , 1024. From fits of the leading scaling behaviour dropping the multiplicative and
additive logarithmic correction terms, ωχ = 0 and Bχ = Cχ = Dχ = 0, to these data,
we find reasonable fit qualities only when dropping many points from the small-L side of
the size range. Successively increasing the cut-off Lmin, a very slow downward drift of the
estimates for γ /ν is observed. For Lmin = 92, we arrive at an estimate γ /ν = 1.0754(22)

with Q = 0.96, which is clearly incompatible with the exact result in terms of the statistical
error. Letting ωχ vary while still keeping Bχ = Cχ = Dχ = 0 fixed, stable and good-quality
fits can be attained. For the range L = 24, . . . , 1024, we have

Aχ = 1.581(31), γ /ν = 1.0166(90),

ωχ = 0.320(40), Q = 0.78,
(43)

in good agreement with the exact result γ /ν = 1, however, again clearly missing the expected
asymptotic value of the exponent of the multiplicative logarithmic correction, ωχ = 2. The
scaling plot presented in figure 7 shows this last fit together with the simulation data, scaled
so as to expose the magnitude of scaling corrections present. The asymptotic value ωχ = 2
could be recovered by including the correction amplitudes Bχ,Cχ and Dχ . Letting only Bχ

additionally vary, ωχ is already increased to ωχ = 1.32(17) with γ /ν = 1.0(48),Q = 0.78
and Lmin = 16. The obviously necessary higher order terms Cχ and Dχ unfortunately cannot
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Figure 7. Finite-size scaling plot of the critical staggered polarizability χ(βc, L) for lattice sizes
from L = 16 up to L = 1024. The solid line shows a fit of the functional form (42) with
Bχ = Cχ = Dχ = 0 to the data. The abscissa has been re-scaled so as to factor out the leading
scaling behaviour ∝ Lγ/ν with γ /ν = 1.0166 from the fit (43).

be fitted any more with the present data, however. On the other hand, fixing again γ /ν = 1
and ωχ = 2, the present corrections can be well described by the amplitudes Bχ , Cχ,Dχ ,
resulting in a quality-of-fit of Q = 0.84 already for Lmin = 16. We note that here even
the inclusion of the (ln L)−3 term Dχ is probably crucial since the leading multiplicative
logarithmic correction is already quadratic.

Estimates of the maxima χ [βχ(L), L] are available for lattice sizes L = 16, . . . , 256. A
reasonable quality fit of the uncorrected form (42) with ωχ = 0 and Bχ = Cχ = Dχ = 0
to these data can be produced starting from Lmin = 64, which yields an estimate γ /ν =
1.2788(58),Q = 0.23, lying even further off the asymptotic result than in the case of the
critical polarizability. Letting ωχ vary while keeping Bχ = Cχ = Dχ = 0 fixed, the estimate
for γ /ν is noticeably reduced to γ /ν = 1.13(08) with ωχ = 0.71(36),Q = 0.15, for
Lmin = 46, and a further tendency to decrease on an increase of Lmin remains. Although here
again, the need for higher order correction terms is apparent, we find the data not precise enough
for their inclusion. Thus, although both methods, consideration of the critical polarizability
and scaling of the peak heights of χ(L), yield equivalent results, we find corrections to
scaling slightly more pronounced in the latter approach. This is partly explained by the fact
that for χ(βc, L) larger lattice sizes could be considered. However, even restricting a fit
with Bχ = Cχ = Dχ = 0 for χ(βc, L) to L � 256, we find with γ /ν = 1.006(11) for
Lmin = 16 a considerably more precise result closer to the asymptotic value; additionally, as
mentioned above, no further drift of γ /ν is noticeable there as Lmin is increased. For the extra
simulation series at inverse temperatures β∗(L) resulting from equation (25) with κ = 1, a
fit with Bχ = Cχ = Dχ = 0 and Lmin = 32 leads to γ /ν = 1.075(66), ωχ = 1.21(29)

with Q = 0.48. Inclusion of the Bχ,Cχ and Dχ terms destabilizes the fits too far, although
consistency with γ /ν = 1, ωχ = 2 is again found on fitting the amplitudes only.

3.2.6. The scaling dimension in the critical phase. Due to the criticality of the high-
temperature phase, one expects scaling and, accordingly, FSS in the whole region β < βc =
ln 2. The closed-form conjecture (19) for the exponent η entails predictions for the FSS of
P0(β, L) and χ(β,L) for β < βc. In terms of the scaling dimension xP = β/ν = 1 − γ /2ν
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Figure 8. Finite-size scaling dimensions xP (β) of the spontaneous staggered polarization and
2 − 2xP (β) of the staggered polarizability, respectively, as a function of inverse temperature β

in the critical phase β < βc. The symbols denote results from FSS fits of the functional forms
(46), resp. (47), with B = C = D = 0 to the simulation data. The solid lines correspond to
the conjecture (44) for the analytic form. The vertical dashed lines indicate the locations of the
free-fermion point βf = 1

2 ln 2 and the critical point βc = ln 2, respectively.

[13] and the inverse temperature β, equation (19) reads

xP (β < βc) = π

2

{
arccos

[
1 − 1

2
exp(2β)

]}−1

, (44)

which behaves close to the critical point βc = ln 2 as

xP (β) = 1

2
+

√
2

π
(ln 2 − β)1/2 + O(ln 2 − β), (45)

such that xP has a vertical tangent at βc, implying an especially sensitive dependence of xP on
scaling corrections there. It is worthwhile to note that, although the correspondence between
the XY and F models only applies to their critical points, an analogous square-root singularity
of the exponent η of the XY model is found on entering the critical low-temperature phase
there, see e.g. [52]. The leading scaling behaviour of P0(β, L) and χ(β,L) for β < βc is
hence expected to be

P0(β, L) = AP0L
−xP (β), χ(β, L) = AχL2−2xP (β). (46)

The solid lines of figure 8 illustrate the predicted behaviour of these exponents in the high-
temperature phase. As can be seen, the polarizability exponent 2 − 2xP (β) crosses zero at the
free-fermion coupling βf = 1

2 ln 2 and, consequently, χ should be non-divergent below. As
a result, the predicted singularity would be covered by non-singular background terms there,
such that we restrict ourselves to the range βf � β � βc here.

To test the form (44) we performed seven series of simulations at inverse temperatures
β = 0.35, 0.40, . . . , 0.65 with the same series of system sizes L = 16, . . . , 1024 used at
β = ln 2. Fitting the expected leading scaling behaviour (46) to the simulation data, many
system sizes from the small-L side have to be dropped to reach satisfactory fit qualities and
to account for the observed slow drift of the resulting scaling exponents on increasing Lmin,
which was finally chosen to be Lmin = 182 in most cases, cf the data in column (a) of
table 3. As can be seen from the fit data presented in figure 8, even with this precaution highly
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Table 3. Fit parameters for P0 and χ in the critical phase βf � β � βc. (a) Fits of the form (46).
(b) Fits of the form (47) with B = C = D = 0. (c) Fits of the form (47) with D = 0 and xP fixed
at the values (44). (d) Fits of the form (47) with D = 0 and ωP0 = 1, resp. ωχ = 2, fixed.

Conjecture (a) (b) (c) (d)

β xP xP Lmin xP ωP0 Lmin ωP0 Q xP Q

ln 2 0.500 0.4643(27) 128 0.487(08) 0.109(33) 24 1.16(32) 0.11 0.48(62) 0.20
0.65 0.614 0.5940(18) 128 0.626(22) 0.18(12) 92 1.01(18) 0.47 0.61(44) 0.44
0.60 0.685 0.6753(15) 182 0.710(17) 0.212(96) 92 0.95(15) 0.61 0.69(38) 0.67
0.55 0.749 0.7334(12) 128 0.761(17) 0.161(94) 92 1.00(17) 0.45 0.75(40) 0.45
0.50 0.811 0.7917(15) 182 0.851(12) 0.354(66) 92 1.04(15) 0.59 0.81(36) 0.49
0.45 0.871 0.8411(14) 182 0.874(15) 0.206(85) 92 1.11(15) 0.02 0.86(34) 0.01
0.40 0.933 0.8835(14) 182 0.954(11) 0.424(60) 64 1.26(19) 0.55 0.91(25) 0.10
0.35 0.996 0.9238(18) 256 0.997(11) 0.456(61) 64 1.46(22) 0.74 0.95(21) 0.07

β 2 − 2xP 2 − 2xP Lmin 2 − 2xP ω′
χ Lmin ωχ Q 2 − 2xP Q

ln 2 1.000 1.0746(28) 128 1.017(09) 0.32(04) 24 2.50(12) 0.91 0.96(309) 0.53
0.65 0.772 0.8206(35) 182 0.726(34) 0.56(19) 92 2.81(11) 0.24 0.66(320) 0.26
0.60 0.629 0.6593(32) 182 0.607(46) 0.32(26) 128 2.85(08) 0.99 0.51(640) 0.45
0.55 0.502 0.5386(21) 128 0.466(31) 0.42(18) 92 2.80(08) 0.79 0.39(668) 0.11
0.50 0.379 0.4211(31) 182 0.304(34) 0.70(19) 92 2.64(14) 0.75 0.28(825) 0.73
0.45 0.257 0.3165(33) 182 0.239(36) 0.50(21) 92 2.93(10) 0.03 0.17(1132) 0.01
0.40 0.134 0.2265(44) 256 0.098(23) 0.81(13) 64 2.81(20) 0.83 0.08(1362) 0.85
0.35 0.009 0.1508(40) 256 0.011(16) 0.88(09) 46 2.85(26) 0.56 0.00(1478) 0.64

significant deviations of the fit results from equation (44) are observed, especially close to
the free-fermion coupling βf . Scaling corrections are assumed here to take the form found at
criticality, i.e.,

P0(β, L) = AP0L
−xP (β)(ln L)ωP0 (β)

[
1 +

BP0

ln L
+

CP0

(ln L)2
+

DP0

(ln L)3

]
,

χ(β, L) = AχL2−2xP (β)(ln L)ωχ (β)

[
1 +

Bχ

ln L
+

Cχ

(ln L)2
+

Dχ

(ln L)3

]
.

(47)

As for the critical polarization and polarizability, fits including all of the correction terms
(amounting to six variable parameters) are not possible with the available data. Including
only the multiplicative logarithmic correction with variable exponent ωP0 , resp. ωχ , we arrive
at largely improved estimates for the scaling dimension xP in agreement with the prediction
(44), see column (b) of table 3 and the data in figure 8. The values of the correction exponents
ωP0 , resp. ωχ , however, again have to be considered as effective exponents owing to the
omission of the additive corrections B,C,D. Note that, in principle, the values of ωP0 ,
resp. ωχ , could also depend on the value of the coupling β as indicated in equation (47).
To investigate this possibility, we performed fits with the leading scaling exponents fixed to
the presumably exact values of xP from (44), letting ωP0 , resp. ωχ , vary and including two
orders of additive scaling corrections, i.e., enforcing D = 0 only. The results of these fits
are collected in column (c) of table 3. In all cases with the exception of β = 0.45, which
seems to be an outlier, we find very good fit qualities, again indicating consistency with the
conjecture (44). The estimates for ωP0 are all consistent with a constant value of ωP0 = 1,
independent of the coupling β. The estimates for ωχ , on the other hand, are clearly larger
than ωχ = 2, but no general trend on varying β is observed. This deviation of ωχ is found
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Figure 9. Scaling of the polarizability peaks from simulation data. The lines simply connect the
data points and are drawn to guide the eye. The dashed vertical line indicates the location of the
asymptotic critical coupling βc = 0.6931 . . ..

to disappear upon inclusion of the next-order correction amplitude Dχ for which, however,
both exponents, xP and ωχ , have to be kept fixed. This term has to be included here but
not for the polarization since for χ already the leading multiplicative logarithmic correction
is quadratic. When fixing both exponents, xP and ω, fits of good quality are attained for
both observables and all couplings β on including all three additive correction terms of (47).
In passing we note that an analysis of χ

/
P 2

0 in the critical phase yields negative values
of ωξ everywhere and fits of the power-law form (35) describe the corrections extremely
well.

3.3. Results of the thermal scaling analysis

The discussed FSS of the critical polarization and polarizability is independent of the value
of the critical exponent ρ. For the scaling of the polarizability peak positions in section 3.2.2,
on the other hand, the need to resolve the present strong logarithmic scaling corrections did not
allow for an additional independent determination of ρ. To directly verify the exponential type
of the observed divergences and to estimate the parameter ρ, one should hence consider thermal
instead of finite-size scaling. Figure 9 shows an overview of the temperature dependence of
the staggered polarizability for different lattice sizes. The clear scaling of χ for the high-
temperature region β < βc = ln 2 illustrates again the presence of a critical phase. In
contrast, for the low-temperature phase to the right of the peaks, the polarizability curves
essentially collapse and only start to disagree as the correlation length reaches the linear extent
of the considered lattice. Therefore, a thermal scaling analysis must be performed in the
low-temperature vicinity of the critical point, the behaviour in the high-temperature phase
being completely governed by finite-size effects. Here, we do not consider the scaling of the
correlation length itself, but instead analyse the thermal scaling of the spontaneous polarization
and the polarizability for a single lattice of size L = 256. Simulations were performed
for a closely spaced series of temperatures in the low-temperature vicinity of the critical
point.



The square-lattice F model revisited 7087

Table 4. Parameters of fits of the form (49) for P0 (upper part), resp. the form (50) for χ (lower
part), to the simulation data. Values in square brackets indicate that the corresponding parameter
was held fixed in the fit procedure.

AP0 BP0 CP0 βc ρ Q

0.8(147) −0.7(156) −0.2(57) 0.706(85) 0.5(32) 0.79
1.67(35) −1.59(31) [−0.5] 0.7089(39) 0.339(44) 0.86
0.736(15) −0.803(11) [−0.5] [0.693 15] 0.522(33) 0.14
0.8088(47) −0.8616(22) [−0.5] 0.694 99(27) [0.5] 0.23
0.691(30) −0.579(78) −0.199(85) 0.7055(32) [0.5] 0.85

Aχ Bχ Cχ βc ρ Q

0.5(13) 0.15(31) [−1.0] 0.62(13) 1.8(18) 0.13
−1.03(21) 0.88(12) [−1.0] [0.693 15] 0.699(37) 0.11
−1.95(11) 1.549(57) [−1.0] 0.7046(19) [0.5] 0.08
−2.2(154) 2.4(179) 0.005(9299) [0.693 15] 0.5(12) 0.08

0.5(24) 0.6(12) [0.0] 0.647(92) 1.2(13) 0.13
−2.18(38) 2.37(27) [0.0] [0.693 15] 0.520(27) 0.12
−2.38(13) 2.531(66) [0.0] 0.6944(19) [0.5] 0.12

3.3.1. Scaling of the spontaneous polarization. From the leading term of (8) in y and the
dependence of λ on β, the spontaneous polarization behaves as

P0(β) = π√
2

[
(β − βc)

−1/2 − 1

6
(β − βc)

1/2 + · · ·
]

× exp

{
− π2

8
√

2

[
(β − βc)

−1/2 − 1

6
(β − βc)

1/2 + · · ·
]}

, (48)

as βc is approached from above. Taking only the leading-order terms into account, we consider
the following scaling form:

ln P0(β) = AP0 + BP0(β − βc)
−ρ + CP0 ln(β − βc), (49)

with CP0 = −1/2 and ρ = 1
2 . The window of validity of (49) for the thermal scaling of P0

for a finite lattice is limited for small deviations β − βc by finite-size effects and for large
deviations β − βc by the higher order corrections to scaling indicated in (48). If correlation
lengths are measured, one might monitor the effect of the finite lattice size by comparing the
value of the correlation length ξ(β, L) at a given β > βc with the linear extent L of the lattice
[10]10. Here, the onset of finite-size effects is estimated by the beginning of the rounding
of the exponential decline of P0 as βc is approached. From monitoring the quality-of-fit
parameter and estimation of the onset of the finite-size rounding, we determine a fit range
of βmin = 0.77 � β � 0.85 = βmax. We find fits of the full five-parameter family (49) of
functions to the data possible, but the resulting fit parameters are endowed with astronomic
error estimates and the corresponding χ2 distribution has multiple minima such that different
‘solutions’ can be found. We thus fix one or two of the parameters at their expected asymptotic
values to reach more stable fits, cf the fit data collected in table 4. Note that the parameters of
the fully unrestricted fit were found starting from the parameters of one of the restricted fits,
thus explicitly selecting one of the χ2 minima. Figure 10 shows the simulation data together
with this unrestricted fit and the exact asymptotic polarization of (8). The vertical line denotes
the inverse temperature β∗ where the asymptotic correlation length ξ(β∗,∞) of equation (7)

10 Although the behaviour of the finite-size correlation length has been indirectly analysed above in section 3.2.3,
unfortunately we do not have access to the amplitude to find the absolute values of ξ(β, L).
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Figure 10. Thermal behaviour of the spontaneous staggered polarization P0 close to βc from
simulations of a 2562 system. The solid line denotes the exact asymptotic result (8) and the
dashed line is a fit of the form (49) to the data. The vertical line denotes the point where
ξ(β∗, ∞) = L = 256. The inset shows the exact solution (8) compared to the first-order
approximation of (48) in the inverse temperature regime used for the fit.

reaches the linear size L = 256 of the system. As expected, this point approximately coincides
with the inverse temperature where the simulation data deviate from the asymptotic result due
to finite-size effects, thus justifying the method of determining βmin. The inset of figure 10
shows the approximation of (48) with only the first-order terms of both expansions being kept
in comparison to the full asymptotic result (8) and the simulation data. As can be seen, even
in the scaling range considered here, the deviation is much larger than the statistical errors
of the data. The observed shift, however, can be mostly reproduced by slight changes of the
amplitudes AP0 and BP0 , such that (49) still fits the data well. The fitted amplitudes AP0 , BP0

and CP0 must be considered effective, however, and deviations of the fitted parameters from the
exact asymptotic values are due to the effective inclusion of neglected higher order correction
terms.

3.3.2. Scaling of the polarizability. From the conjecture (18) for the near-critical
polarizability, we expect χ(β) to scale analogous to the polarization,

ln χ(β) = Aχ + Bχ(β − βc)
−ρ + Cχ ln(β − βc), (50)

where the differences to the scaling of P0 only show up in the amplitudes Aχ,Bχ and Cχ = −1.
From the flattening out of the exponential divergence near βc and by monitoring the quality
of fit, we estimate the same scaling window βmin = 0.77 � β � 0.85 = βmax for (50) we
encountered for the polarization. We find fits for the polarizability to be considerably less
stable than those for the polarization, and we did not succeed in fitting all five parameters
independently. Fixing Cχ = −1, a reasonable result for ρ cannot be found, even when
additionally fixing βc = ln 2, cf the data compiled in table 4. Since a fit with only βc

fixed yields Cχ ≈ 0, corresponding to an omission of this correction term, we also tried fits
with Cχ = 0 fixed, which work considerably better than fits with Cχ = −1. However, still
meaningful results for ρ and βc can only be found when fixing one of the two parameters, which
then yields good agreement with the asymptotic result. Figure 11 shows the simulation data
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Figure 11. Thermal scaling of the polarizability on a L = 256 lattice. The solid curve shows a fit
of the functional form (50) to the data, where the parameters Cχ = 0 and βc = ln 2 were kept fixed.
The vertical dashed lines indicate the window of data points included in the fit. To judge the onset
of finite-size effects, the dashed–dotted curve shows the logarithm of the ratio ξ(β, ∞)/L from
equation (7), such that strong size effects are expected to appear as soon as ln[ξ(β, ∞)/L] � 0
(right scale).

together with a fit with Cχ = 0 and βc = ln 2 fixed. Comparison of the asymptotic correlation
length (7) with the system size L = 256 indicates the approximate onset of finite-size effects
as the critical point is approached.

To see how far it is possible to distinguish the occurring essential singularity from a
conventional power-law behaviour, we also performed fits to the form (50) with the left side
replaced by χ(β) instead of ln χ(β) and Cχ = 0 held fixed. With this power-law form and
the same range of inverse temperatures used for the exponential fits, we arrive at the following
parameters:

A′
χ = 13.5(49), B ′

χ = 0.040(35), βc = 0.7112(96),

ρ ′ = 3.54(51), Q = 0.13,
(51)

where ρ ′ now would correspond to the conventional critical exponent γ for the case of a finite-
order phase transition. Thus, in agreement with the experience from the two-dimensional XY
model, power-law fits can be performed with satisfactory quality if one accepts ‘unnaturally’
large exponents such as ρ ′ = 3.5 here.

4. Conclusions

We have considered the behaviour of the six-vertex F model on the square lattice at its
Berezinskii–Kosterlitz–Thouless (BKT) point and within the critical high-temperature phase
with a series of cluster-update Monte Carlo simulations and subsequent finite-size and thermal
scaling analyses. Due to the presence of strong logarithmic corrections indicated by the exact
solution and expected for a theory with central charge c = 1, the scaling analysis has to
carefully take correction terms into account and/or treat the presence of (even higher order)
corrections by omission of simulation points close to the border of the scaling region. Although
the usefulness of the finite-size scaling (FSS) technique has been called into question at a BKT
point due to the occurrence of essential singularities and most studies of the XY model case
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solely consider thermal scaling instead [10], we find a FSS analysis for the F model well
possible and useful, as long as corrections to scaling are thoroughly included. The full FSS
forms including the correction terms are explicitly derived from the exact results augmented by
the plausible assumption (30) about the scaling of the finite-size correlation length. The latter
is being confirmed by the analysis of a combination of observables proportional to a power
of the correlation length without multiplicative logarithmic corrections, providing evidence
that the finite-size correlation length exhibits additive logarithmic corrections in the present
case (as opposed to multiplicative logarithmic corrections such as, e.g., at the upper critical
dimension [47]). Due to the ambitious nature of many of the fits involved, however, one has
to cope with the occurrence of competing local minima of the χ2 distribution and a distinctive
flatness of these minima in some parameter directions entailed by the slow variation of the
logarithmic terms. We would like to stress that the quality-of-fit parameter Q is found to
be not always sufficient for the detection of neglected higher order corrections. Omitting
the discussed correction terms, however, the resulting estimates do not even satisfy moderate
expectations of accuracy and are strongly biased. For the FSS analysis, the knowledge of the
exact asymptotic critical coupling βc turns out to be highly beneficial and the results found
from the scaling at effective pseudo-critical points are much less accurate. This might be taken
as a caveat for simulations of the XY model, where βc is not exactly known. The correction
exponents ωP0 for the polarization and ωχ for the polarizability could not be consistently
and accurately determined in fully unrestricted fits, although constrained fits including further
correction terms allow us to establish consistency with the analytical solution. This experience
is shared with simulational studies of the XY model [12, 17]. A thermal scaling analysis of
the low-temperature approach towards criticality only leads to reasonably precise results for
the present data if at least one of the fit parameters is fixed to its exact value. A conventional
algebraic singularity also fits the data, but only when unusually large exponents are
accepted.

In addition to the analysis at criticality, we consider the scaling of the polarization and the
polarizability within the critical high-temperature phase. We find overall good agreement of
the outcome with a conjecture [34, 35] for the behaviour of the scaling dimension xP (β) of the
polarization in the critical phase, although the resolution of scaling corrections appears to be
even more involved here than at criticality. Close to the critical point, scaling corrections are
especially pronounced, since the scaling dimension xP (β) turns out to have a vertical tangent
at βc. This might also contribute to the relatively poor outcome of the FSS analysis of the peak
heights of the polarizability. With respect to the values of the effective correction exponents ω

found for β < βc (cf table 3), we note comparing to the critical-point behaviour that the nature
of the corrections seems to be rather different in both cases, such that the effective correction
exponents and amplitudes exhibit fast variation as the critical phase is entered, which is again
related to the singularity of xP (β) at βc.

Finally, from deliberately reducing our simulation data set, we note that including lattice
sizes only up to, e.g., L = 128, most of the estimates for βc, γ /ν, β/ν, xP (β) and ρ are not
found to be compatible with the asymptotic results in terms of the statistical errors. Thus,
consideration of large system sizes is crucial here for the resolution of scaling corrections,
see also [17]. This explains troubles experienced in the numerical analysis of the F model on
a particular, annealed ensemble of fluctuating quadrangulations, which due to their intrinsic
fractality only allow simulations of lattices with rather small effective linear extents [18].
For a more detailed investigation of the thermal scaling properties, an analysis involving
measurements of the finite-size correlation length would be valuable. This, as well as
the examination of the critical phase below the free-fermion point βf , is left to a future
investigation.
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